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go(x)= f (x) 
gl(x) = 2 f ( x ) -  f (x)* h(x) 

g, +1 (x)= g,(x) + [ f ( x ) -  g,(x)* h(x)] . (3o) 

Iteration stops when the correction term, f ( x ) -  
g,(x)*h(x), is of the same order of magnitude as the 
errors in the original data. 

For solving the more general equation (24), the con- 
volution operation in (30) is replaced by the integral 
of (24). 

The fully sharpened version of the data of Fig. 2 
is shown in Fig. 8. The first equatorial halo is not 
plotted as it will of course have zero azimuthal spread. 
There is marked agreement with the crystalline fibre 
pattern. 

7. Conclusions 

The azimuthal sharpening technique described in this 
paper is particularly applicable where a well separated 
equatorial halo is available for determining the dis- 
tribution of entity axes. In principle, a meridional halo 
would be even easier to use since it gives a section of 
the distribution directly. However, meridional reflex- 
ions are much more sensitive to disorder such as 
curved chains or lack of longitudinal register between 
the chains which will smear the reflexion along the 

layer line. This component of smearing would be dif- 
ficult to remove. 

The smearing process of § 5 could, in fact, be carried 
out in a single step for any form of t~(0~1,~2)  , although 
this would involve complicated double integrals. Thus 
the iterative method could be used to reverse the 
process in a single step. However, this requires knowl- 
edge of q~(c~1,~2) rather than its projection. For fibre 
symmetry, we would additionally need to solve (12) 
for 4~2. 

We acknowledge the stimulation of correspondence 
with Professor W. Ruland on this topic and also the 
financial support provided by the Science Research 
Council. 
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Condensed models of crystal structures based on the stacking of equal square-type layers corre- 
sponding to the three possible symmetries (plane groups p4m, p4g and p4) are studied in a general way 
for the regular stacking modes. The minimum set of standard sheets required to represent any structure 
based on each layer symmetry is derived by considering transparent sheets, either square or standard 
rectangular in shape. In the latter case four sheets are necessary for p4m and p4g patterns, and eight 
sheets for p4 patterns. An example of a p4g layer occurring in the CuAI2 and TISe structures is presented. 

Introduction 

The representation of crystal structures, which is a 
three-dimensional problem, can in most cases be 
formally decomposed into a 2D+ 1D (two-plus-one- 
dimensional) problem by considering sections of the 
structure (layers) and the way they stack together. 
Crystal-structure models can therefore be designed by 
slicing the structure into layers of atoms and drawing 
them on transparent sheets which are then mounted 

one above another with a proper spacing. Such models 
are particularly useful for representing inorganic close- 
packed structures and are called 'condensed models' 
(Lima-de-Faria, 1965, 1966). Standard sheets have been 
designed where the packing atoms are represented by 
full circles, and all the possible interstitial sites resulting 
from the stacking of the adjacent close-packed layer 
are drawn as dashed circles. Any layer of a close-packed 
structure is figured out simply by painting in the oc- 
cupied interstitial sites, and in this way a versatile sys- 
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tem is available from which a wide range of crystal- 
structure models can be made. 

The minimum set of standard rectangular sheets 
necessary to build any layer sequence involving the 
regular modes of stacking has already been derived for 
the square close-packed layers [parallel to (001) of the 
cubic closest packing-] and for the closest-packed 
layers (Figueiredo & Lima-de-Faria, 1972, 1977). It 
was then shown that a determining factor is the loca- 
tion of the layer pattern in relation to the centre of the 
sheet. 

A theoretical approach to the representation of 
crystal structures by condensed models is presented by 
considering the symmetry of the layer pattern in con- 
nexion with the stacking modes for equal layers and the 
shape of the sheet. This general treatment is illustrated 
through the consideration of layers with square sym- 
metry (plane groups p4m, p4g and p4). 

General  remarks 

The origin of the unit cell of the layer pattern is the 
reference position of the layer, denoted A (Fig. 1, top 
left). Points ~ and fl (midway along the unit-cell edges) 
and point B (unit-cell centre) are the projections of the 
points homologous to A in following layers, stacked 

on the first layer according to the regular modes. The 
layer positions related by the projected stacking vec- 
tors Aa and Ap (translations 0,½ and ½,0 respectively) 
correspond to the mode of stacking symbolized by the 
letter b; vector AB (translation ½, ½) corresponds to the 
stacking mode denoted by the letter f, and the stacking 
without translation of the layer pattern is symbolized 
s (Lima-de-Faria & Figueiredo, 1976). 

In the representation of crystal structures by con- 
densed models, the rigid-body translation of a layer, 
which corresponds to a certain stacking vector, is 
achieved by an appropriate rotation of the layer pat- 
tern suitably drawn on a transparent sheet. As the two 
faces of the sheet are indistinguishable, even rotations 
which reverse the face are allowed. 

The process of generating different stacking posi- 
tions of the layers with the same transparent sheet in- 
volves the use of rotations coplanar with or perpen- 
dicular to the plane of the sheet. The rotation of the 
sheet must generate a new position differing from the 
starting position only by a translation, a condition 
imposed by the definition of the stacking modes. If the 
layer pattern has mirror lines, the rotation of the sheet 
about diad axes parallel to these lines will reproduce 
the layer pattern, but displaced in relation to the initial 
position, thus satisfying the stacking condition men- 
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Fig. 1. Scheme of the minimum set of standard rectangular-shaped and of square-shaped sheets for the representation by condensed models 
of structures based on square-type layers stacked in any possible sequence of the regular stacking modes. The position projection net, the 
projected stacking vectors and the choice of the sheet centre, defined by the diad axes coplanar with the sheet, are represented in the first 
column, which contains also the possible symmetries of the layer pattern. The useful symmetry operators of the rectangular and of the 
square transparent sheets are represented at the top of the figure. The standard sheets are aligned in columns according to the various 
stacking modes:f, b and s. 
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tioned above. The same holds for the glide lines, but, 
because of the translation inherent in the glide reflex- 
ion, the rotation axes of the sheet may even coincide 
with such lines. Moreover, if the stacking vector has its 
origin over a useful symmetry element of the layer pat- 
tern, the corresponding rotation axis of the sheet will 
contain the middle point of the stacking vector. 

To generate a maximum number of different stacking 
positions by appropriate rotations of one sheet, the 
location of the sheet centre in relation to the symmetry 
elements of the layer pattern has to be such as to max- 
imize the number of symmetry elements which can be 
useful. 

In the case of square-type layers, this is achieved by 
locating the origin of the stacking vectors at a roto- 
centre* and by making the rotation axes of the sheet 
cross the stacking vectors at their middle point; this 
corresponds to the location of the sheet centre over the 
middle of the square defined by the stacking vectors 
(Fig. 1). 

Standard rectangular transparent sheets 

The rectangular-shaped sheets have three rotation 
axes: two on their own plane and another perpendic- 
ular to it (Fig. 1). 

In the case ofp4m layers there are mirror lines in two 
perpendicular directions, therefore, all these rotations 
are permissible. Starting with position A, position a is 
obtained by rotation about the diad axis I. The choice 
of the origin at the fourfold rotocentre and the location 
of the sheet centre makes the displacement vector as- 
sociated with this rotation equal to the stacking vector 
As. In a similar way position fl is produced by rotating 
the sheet about the diad axis II, and position B by com- 
bining both rotations, or by using the diad axis normal 
to the plane of the sheet. Therefore, only one sheet is 
required to represent all possible positions for the 
regular stackings. 

The four stacking positions are specified by letters 
inscribed in the sheet corners, the upper left-hand 
corner being taken as reference. Any letter identifies a 
stacking position only when brought to this reference 
corner. A standard sheet placed in a certain stacking 
position is specified by the letter referring to this posi- 
tion, followed by the other letters listed according to 
a clockwise sequence, and all enclosed within square 
brackets. 

When marking on the pattern of the packed atoms 
the interstices corresponding to the various stacking 
modes, four different sheets will be generated. If we 
consider first the stacking f (½,½ translation) and start 
with a sheet in position A, [AaBfl], and mark the inter- 
stices defined by stacking over it a second sheet placed 
in position B, [BflAa], we obtain the four different 

* Designation introduced by Le Corbeiller & Loeb (1967) which 
we prefer to 'rotation point' adopted in International Tables for 
X-ray Crystallography (1969). 

relative positions: B over A, fl over a, A over B and a 
over ft. This grouping of the corner letters results from 
the coherency among the stacking positions, and covers 
all the possible combinations of the positions by this 
way of stacking. The complete standard sheet, with 
packed atoms and interstitial sites, is designated by 
[ABo~pBAfl~] , thus emphasizing by subindices the stack- 
ing positions to be placed immediately above, and 
which define the marked interstices. For the stacking 
s (0,0 translation) only one sheet is necessary 
[Aao~,BBflp], and for the stacking b, with two possible 
translations 0,½ or ½,0, two sheets are necessary, 
[A~O~ABI~flB ] and [A~o~BB~flA] respectively. The simplest 
case of a p4m layer, the square layer parallel to the 
(001) plane of cubic closest packing, has already been 
studied (Figueiredo & Lima-de-Faria, 1972, 1977). 

In layer patterns with symmetry p4g, the rotation 
axes of the sheet coincide with glide lines. As a conse- 
quence, every axis produces a translation along itself. 
Only one sheet generates the four stacking positions, 
as for the previous case, but the sheet is now [AflBo~] 
instead of [AaBfl]. By marking the interstices, four 
complete standard sheets are derived (Fig. 1). An ex- 
ample of a square-type layer with p4g symmetry is the 
N 21 layer (Lima-de-Faria & Figueiredo, 1976), which 
appears in several structures, mainly alloys, e.g. 
Cu~[A12]N} ', TltTI~[Se2]N} ' ,  NiPAlCb[A12] N2', where 
c-b means anti-cubic void, t, tetrahedral void, p, pris- 
matic void, and cb, cubic void. A rectangular standard 
sheet of a N 21 layer corresponding to the stacking f is 
shown in Fig. 2. The interstices are of three kinds: 
distorted anti-cubic (r~=0-693R, where R means the 
radius of the packing atoms), square (rsq = 0-414R), and 
two types of distorted tetrahedral interstices (rt~= 

Fig. 2. Standard sheet, on a reduced scale (actual size of full circles 
R = 1 cm) of a N 21 layer showing the relative positions AB, fl,, BA 
and ~p, which correspond to the stacking f. Packed atoms are 
represented by full circles; large dotted circles correspond to 
distorted anti-cubic interstices, dotted circles concentric with these 
correspond to square voids, and the other dotted circles represent 
two categories of distorted tetrahedral interstices. 
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Fig. 3. Sheet No. 1 of the condensed model of thallium selenide. 

Selenium atoms are represented by full circles forming N 2t layers; 
thallium atoms correspond to filled circles, the smaller having 
tetrahedral coordination and the larger anti-cubic coordination. 
The unit cell (origin at level of the centres of packed atoms) and 
the elements of symmetry belonging to this sheet are also marked. 

0"366R and rt2=O'311R). There are half as many anti- 
cubic, square and larger tetrahedral voids as packing 
atoms, and twice as many of the smaller tetrahedral 
voids as packing atoms. The first sheet of the condensed 

model for the TltTI~[Se2]~¢~ 1 structure is shown on 
Fig. 3. 

No symmetry lines exist on layers with symmetry 
p4, and rotations about the diad axes I or II produce 
enantiomorphous patterns, and, therefore, no possible 
positions. Only the diad axis perpendicular to the 
plane of the sheet can produce a new position because 
the pattern is then congruent. Each sheet can represent 
only two stacking positions, and therefore a total of 
eight standard sheets is necessary for the p4 patterns 
(Fig. 1). 

Square transparent sheets 

The symmetry operations of a square-shaped trans- 
parent sheet include two groups of diad axes on the 
plane of the sheet and a fourfold axis normal to it 
(Fig. 1). Thus, by fully using the two faces of the sheet 
each corner may represent two stacking positions, and 
therefore eight orientations of the sheets are possible. 

Mirror and glide lines inclined at 45 ° are present in 
layer patterns with symmetries p4m and p4g, thus al- 
lowing the use of rotation axes III and IV of the square- 
shaped sheet. Moreover, in p4m patterns the rotation 
axis III coincides with a mirror line, and rotation axis 
IV with a glide line. In p4g patterns the reverse is true. 

Every one of the four stacking positions that were 
already obtainable with only one rectangular sheet 
appears twice in a square sheet because of this diagonal 
mirror line. The superposition of the pattern of inter- 
stices over the pattern of the packing atoms may des- 
troy this mirror line and the corresponding rotation 
axis becomes operative. As a consequence only three 
sheets are required for symmetries p4m and p4g, in 
order to obtain all the modes and possibilities of stack- 
ing (Fig. 1). 

In the case of layer patterns with symmetry p4, the 
existence of a fourfold rotation axis perpendicular to 
the square sheets allows the generation of the four 
stacking positions with the same sheet. As the rotation 
axes coplanar with the sheet are forbidden because 
they reverse the pattern, the permissible symmetry 
operations of the sheet are exhausted in this first pro- 
cess of generating the four stacking positions. If we now 
mark the pattern of the interstices for the normal 
stacking modes, four standard sheets are necessary to 
produce all the possible situations (Fig. 1). 

The minimum set of standard sheets required to 
represent any sequence of square-type layers is there- 
fore larger for the rectangular-shaped sheets than for 
the square-shaped ones. Nevertheless, the rectangular 
shape is more suitable for standardization purposes 
because the elaboration of a condensed-models file 
covering the various ideal structure types with many 
different symmetries would become very complicated 
with the use of different shapes for the standard sheets 
(square, hexagonal, rectangular, etc.), and conse- 
quently, of different supporting racks for their display. 
However, square-shaped sheets may be appropriate 
for building the condensed model of a particular struc- 
ture if one does not intend to develop such a file. 

This research was partly supported by a grant of the 
Calouste Gulbenkian Foundation which is very grate- 
fully acknowledged. 
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